Algebra Test Prep and Review

Table of Contents

Introduction
- Preface: v
- Review and Test-Taking Tips: vi
- About the Author: viii

Unit 1: Fundamental Concepts
- 1-1 The Real Numbers: 1
 - the real number system, sets, basic mathematic symbols, absolute value
- 1-2 Operations with Real Numbers: 6
- 1-3 Exponents & Order of Operations: 8
- 1-4 Algebraic Expressions: 10
 - evaluating expressions, translating words into algebraic expressions, properties of addition and multiplication
- 1-5 Simplifying Algebraic Expressions: 13
 - equivalent expressions, combining like terms, removing parentheses
- 1-6 Exponents & Scientific Notation: 16
 - Summary: 18
 - Practice Quiz: 21

Unit 2: Equations and Inequalities
- 2-1 Solving Equations: 23
 - linear equations, properties of equality, procedure for solving equations, equations involving decimals/fractions
- 2-2 Linear Equations and Modeling: 28
 - geometry formulas, consecutive integers, business problems, motion problems, concentration/mixture problems
- 2-3 Sets and Inequalities: 39
 - intervals, properties of inequalities, solving inequalities
- 2-4 Unions, Intersections, and Subsets: 45
- 2-5 Absolute-Value Equations & Inequalities: 48
 - Summary: 53
 - Practice Quiz: 57

Unit 3: Functions and Graphs
- 3-1 Graphing Equations: 59
 - the coordinate plane, graphs of linear equations, graphing nonlinear equation with two variables
- 3-2 Functions: 62
 - finding function values, graphing a function, the vertical line test
- 3-3 Domain, Range, and Relations: 66
- 3-4 Linear Functions: 68
 - slope, slope-intercept function of a line
- 3-5 Graphing Linear Equations: 71
 - graphing using the slope and the y-intercept, vertical and horizontal lines, perpendicular and parallel lines
- 3-6 Straight Line Equations: 75
 - point-slope equation of a line, finding an equation of a line
 - Summary: 79
 - Practice Quiz: 81

© 2014 The Critical Thinking Co.™ • www.CriticalThinking.com • 800-458-4849
Unit 4 Systems of Equations & Inequalities

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-1</td>
<td>Systems of Equations</td>
<td>83</td>
</tr>
<tr>
<td>4-2</td>
<td>Solving Systems by Substitution or Elimination</td>
<td>86</td>
</tr>
<tr>
<td>4-3</td>
<td>Systems of Linear Inequalities in Two Variables</td>
<td>90</td>
</tr>
<tr>
<td>5</td>
<td>Practice Quiz</td>
<td>94</td>
</tr>
</tbody>
</table>

Unit 5 Polynomial Functions

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>5-1</td>
<td>Addition & Subtraction of Polynomials</td>
<td>97</td>
</tr>
<tr>
<td>5-2</td>
<td>Multiplying Polynomials</td>
<td>101</td>
</tr>
<tr>
<td>5-3</td>
<td>Factoring</td>
<td>104</td>
</tr>
<tr>
<td>5-4</td>
<td>Factoring $ax^2 + bx + c$</td>
<td>107</td>
</tr>
<tr>
<td>5-5</td>
<td>Factoring Special Products</td>
<td>110</td>
</tr>
<tr>
<td>6</td>
<td>Practice Quiz</td>
<td>113</td>
</tr>
</tbody>
</table>

Unit 6 Rational Expressions

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>6-1</td>
<td>Rational Expressions and Multiplication</td>
<td>117</td>
</tr>
<tr>
<td>6-2</td>
<td>Adding & Subtracting Rational Expressions</td>
<td>120</td>
</tr>
<tr>
<td>6-3</td>
<td>Polynomial Division</td>
<td>124</td>
</tr>
<tr>
<td>6-4</td>
<td>Complex Rational Expressions</td>
<td>128</td>
</tr>
<tr>
<td>6-5</td>
<td>Rational Equations</td>
<td>130</td>
</tr>
<tr>
<td>6-6</td>
<td>Applications of Rational Equations</td>
<td>132</td>
</tr>
<tr>
<td>7</td>
<td>Practice Quiz</td>
<td>137</td>
</tr>
</tbody>
</table>

Unit 7 Radicals

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>7-1</td>
<td>Roots and Radicals</td>
<td>142</td>
</tr>
<tr>
<td>7-2</td>
<td>Rational Exponents</td>
<td>146</td>
</tr>
<tr>
<td>7-3</td>
<td>Simplifying Radicals Using Product & Quotient Rules</td>
<td>149</td>
</tr>
<tr>
<td>7-4</td>
<td>Operations with Radicals</td>
<td>151</td>
</tr>
<tr>
<td>7-5</td>
<td>Dividing Radicals</td>
<td>153</td>
</tr>
<tr>
<td>7-6</td>
<td>Solving Equations with Radicals</td>
<td>155</td>
</tr>
<tr>
<td>7-7</td>
<td>Complex Numbers</td>
<td>159</td>
</tr>
<tr>
<td>8</td>
<td>Practice Quiz</td>
<td>164</td>
</tr>
</tbody>
</table>
Unit 8 Quadratic Equations and Inequalities .. 169-193

8-1 Solving Quadratic Equations ... 169
8-2 Completing the Square ... 171
8-3 The Quadratic Formula ... 174
8-4 Applications of Quadratic Equations ... 177
8-5 Discriminant of Quadratic Equations
 writing equation from solutions ... 180
8-6 Solving Equations in Quadratic Form ... 183
8-7 Quadratic and Rational Inequalities
 solving quadratic inequalities, solving rational inequalities

 Summary .. 190
 Practice Quiz .. 193

Unit 9 Conics 194-222

9-1 Circles ... 194
 the distance formula
9-2 Parabolas ... 196
9-3 Ellipses ... 204
9-4 Hyperbolas ... 208
9-5 The General Conic Form
 function transformations, general-form conic equations
9-6 Nonlinear Systems of Equations

 Summary .. 215
 Practice Quiz .. 222

Unit 10 Exponential and Logarithmic Functions 223-254

10-1 Exponential Functions ... 223
10-2 Inverse and Composite Functions ... 227
10-3 Logarithmic Functions ... 235
10-4 Rules of Logarithms ... 240
10-5 Common and Natural Logarithms
 changing the base of a logarithm ... 243
10-6 Exponential and Logarithmic Equations

 Summary .. 246
 Practice Quiz .. 250

Unit 11 Determinants and Matrices 255-281

11-1 Determinants
 expansion by diagonals, expansion by minors, expansion by any row/column
11-2 Cramer’s rule ... 259
11-3 Matrices ... 262
 matrix addition & subtraction, matrix multiplication
11-4 Matrix Inverse
 identity matrix, Gauss-Jordan elimination method to find \(A^{-1} \), solving a linear system, using a graphing calculator (TI-83 Plus)

 Summary .. 277
 Practice Quiz .. 281

Answers & Index ... 283-293

Answers .. 283
Index .. 290
Evaluating Polynomial Functions

- **Polynomial function:** The expression used to describe the function is a polynomial.

 Example: \(f(x) = 2x^3 - 3x^2 + 7x + 8 \)
 \(g(x) = -3x^4 + 5x^2 - 2 \)

 \[f(x) \text{ & } g(x) \text{ are functions.} \]

- **Evaluating polynomial functions**

 Example: 1. If \(f(x) = 2x^3 + 1 \), find \(f(2) \) and \(f(-1) \).

 \[f(2) = 2(2)^3 + 1 = 16 + 1 = 17 \]
 \[f(-1) = 2(-1)^3 + 1 = -2 + 1 = -1 \]

 2. If \(R(x) = -8x^3 + x^2 + 2 \), find \(R(0) \) and \(R\left(\frac{1}{2}\right) \).

 \[R(0) = -8(0)^3 + (0)^2 + 2 = 2 \]
 \[R\left(\frac{1}{2}\right) = -8\left(\frac{1}{2}\right)^3 + \left(\frac{1}{2}\right)^2 + 2 \]
 \[= -1 + \frac{1}{4} + 2 = \frac{5}{4} \]

 Example: The polynomial function \(C(x) = 3,000 + 0.5x^2 \) can be used to determine the total cost (in dollars) of producing \(x \) laptops in an electronics firm.

 1. What is the total cost of producing 10 laptops?
 2. Use the following graph to estimate \(C(40) \).

 Solution: 1. \(C(10) = 3,000 + 0.5(10)^2 \)

 \[= 3,000 + 50 \]
 \[= 3,050 \]

 \(C(x) = 3,000 + 0.5x^2 \), replace \(x \) with 10.

 \(x = \text{Number of laptops} \)

 2. \(C(40) \): locate \(x = 40 \) on the \(x \) axis, move vertically to the graph, and then move horizontally to the \(C(x) \) axis. Thus \(C(40) \approx 3,800 \).
Adding and Subtracting Polynomials

Adding or subtracting polynomials

Example: Find the sum of \(2x^3 - 3x^2 + x - 4\) and \(x^3 + 4x^2 + 2x + 1\).

Steps

- Regroup like terms.
- Combine like terms.

Solution

\[(2x^3 - 3x^2 + x - 4) + (x^3 + 4x^2 + 2x + 1)\]

\[= (2x^3 + x^3) + (-3x^2 + 4x^2) + (x + 2x) + (-4 + 1)\]

\[= 3x^3 + x^2 + 3x - 3\]

Example: Find the difference of \(5x^2 + 4x - 2\) and \(2x^2 - 3x + 13\).

Steps

- Remove parentheses. (Reverse each sign in second parentheses.)
- Regroup like terms.
- Combine like terms.

Solution

\[(5x^2 + 4x - 2) - (2x^2 - 3x + 13)\]

\[= 5x^2 + 4x - 2 - 2x^2 + 3x - 13\]

\[= (5x^2 - 2x^2) + (4x + 3x) + (-2 - 13)\]

\[= 3x^2 + 7x - 15\]

Column method

Example: Find the sum of \(3x^3 - 5x^2 + 7x - 3\) and \(2x^3 + 3x + 5\).

Steps

- Line up like terms in columns.
- Add.

Solution

\[3x^3 - 5x^2 + 7x - 3 + 2x^3 + 3x + 5\]

\[= 5x^3 - 5x^2 + 10x + 2\]

Example: Find the difference of \((5x^2 - 2x + 3) - (2x^2 - 5)\).

Steps

- Line up like terms in columns:
- Change signs in minuend and add.

Solution

\[5x^2 - 2x + 3 \quad \text{Subtrahend}\]

\[-2x^2 + 5 \quad \text{Minuend}\]

\[3x^2 - 2x + 8 \quad \text{Difference}\]

The opposite of the polynomial:

\(-p\): the opposite of the polynomial \(p\): polynomial \(p + (-p) = 0\)

Example: Write two expressions for the opposite of the polynomial \(7a^4b^2 - 3a^3b - 4a^2\)

Solution: opposite expression: \(- (7a^4b^2 - 3a^3b - 4a^2)\)

or \(-7a^4b^2 + 3a^3b + 4a^2\)

Replace each term with its opposite.
Factoring Polynomials by Grouping

Steps for factoring by grouping:

- Group terms with the GCF.
- Factor out the GCF from each group.
- Factor out the GCF again from the last step.

Factoring completely: Continue factoring until no further factors can be found.

Example: Factor the following completely.

1. \(6ab^2 - 3a^2b + 2b - a = (6ab^2 - 3a^2b) + (2b - a)\)
 \(= 3ab(2b - a) + (2b - a) \cdot 1\)
 \(= (2b - a)(3ab + 1)\)

2. \(2ab + bc - 2bc + 4ab = (2ab + 4ab) + (bc - 2bc)\)
 \(= 6ab - bc\)
 \(= b(6a - c)\)

3. \(x^3 - xy^2 - x^2y + y^3 = (x^3 - x^2y) - (xy^2 - y^3)\)
 \(= x^2(x - y) - y^2(x - y)\)
 \(= (x - y)(x^2 - y^2)\)
 \(= (x - y)(x + y)(x - y)\)
 \(= (x - y)^2(x + y)\)

Tip: Recognize factoring patterns, such as \(2b - a\), \(x - y\), ...

4. \(32x^3y - 2xy^3 = 2xy(16x^2 - y^2)\)
 \(= 2xy[(4x)^2 - y^2]\)
 \(= 2xy(4x + y)(4x - y)\)