TABLE OF CONTENTS

Why Use Th	is Book	ii
Teaching Su	ggestions	Vi
About the Au	uthor	Vi
Student Intro	oduction	vii
Dedication		viii
Chapter 1	Fundamentals of Geometry Reasoning	Pages 1-7
	Geometry Notation	1-2
	Geometry Notation Practice	
	All About Lines	
	All About Planes	
	Build It!	
Chapter 2	Three Planes in Space	
Chapter 2	Uncovering All the Angles	•
	Types of Angles Angles Activity	
	Triangle Activity	
	Triangle Practice	
	Quadrilateral Activity	
	Complementary and Supplementary Angles	
	Vertical Angles	
	Angles Puzzle 1	
	Angles Puzzle 2 Parallel Lines and Transversals I	
	Parallel Lines and Transversals II	
	Puzzle 3 - The 20-Angle Problem	
Chapter 3	Triangle Properties	Pages 21-29
	Sum of Angle Measures	21
	Exterior Angle Exploration	
	Sum of Two Sides	_
	Triangle Properties Practice	
	Triangle Opposite PropertyProperties of Equilateral and Isosceles Triangles	
	Algebra and Geometry	
Chapter 4	The Pythagorean Theorem	
	Exploration - What Is a Theorem?	•
	Pythagorean Triples	
	Pythagorean Triples Practice	32
	Using the Pythagorean Theorem	
	Pythagorean Theorem Applications	
	Solving Multi-Step Right Triangle Problems Special Right Triangles - An Introduction	
	opediai Nigrit Thangles - All Illitouuciidh	

TABLE OF CONTENTS (Cont.)

Chapter 5	Uncovering All Polygons	Pages 42-51
	Polygons – Investigation of Angles and Sides	42
	Polygons Angle Exploration	
	Summary of Polygon Properties	46
	Diagonal Exploration	
	The Handshake Problem	50-51
Chapter 6	Quadrilateral and Parallelogram Properties	Pages 52-78
	The Quadrilateral Family	52-54
	Venn Diagram Activity	55
	Parallelogram Discovery	56-57
	Parallelogram Properties	58-59
	Working With Parallelograms	
	Experimenting With Parallelograms	64-66
	A Look at Trapezoids	67-72
	Kite! Kite! Kite!	73
	Critical Thinking About Quadrilaterals	74
	Midsegment Investigation	75
	Using Algebra to Solve Quadrilateral Problems	76-77
	Quadrilateral Matching	78
Chapter 7	Metric Geometry	Pages 79-96
	Perimeter and Circumference	79
	Pi (π) Investigation	80
	Perimeter and Circumference Activity	81
	Archimedes' Idea for Approximating Pi	
	Area of Parallelograms	
	Parallelogram Area Activity	86
	Area of Triangles and Trapezoids	
	Discovering the Area of a Trapezoid	
	Area of a Trapezoid	
	Area of Circles	
	The Arbelos Problem	96
Chapter 8	Geometric Constructions	Pages 97-119
	A Geometric Construction	97
	How to Bisect an Angle	98-99
	How to Copy an Angle	100
	How to Construct a Perpendicular Bisector to a Line	
	Finding the Median in a Triangle	
	How To Construct a Line Parallel To Another Line	
	Geometric Construction Review	
	Problem-Solving With Geometric Constructions	
	Problem-Solving With Impossible Constructions	

Chapter 9	The Geometry of Three Dimensional Shapes	Pages 120-134
	3D Shapes - Prisms	120-122
	The Volume of Cylinders	123-124
	Volumes of Pyramids and Cones	125-126
	Turn Up the Volume!	127-128
	Volume of a Sphere	129-130
	Surface Area of Prisms	131
	Surface Area of a Cylinder Activity	132
	Finding Surface Area	133
	Euler's Formula	134
Chapter 10	Symmetry and Transformations	Pages 135-167
	What is Vertical, Horizontal, and Point Symmetry?	135-137
	Transformations - Reflections	
	Transformations - Translations	
	Transformations - Rotations	148-153
	Transformations - Dilations	
	Glide Reflections and Compositions	158-164
	Tessellations	
Chapter 11	Proving Triangles Congruent	Pages 168-190
	Introduction to Proofs - Congruency	168-169
	SSS Activity	
	SAS Activity	171
	ASA and AAS Activities	172
	SSA Activity	173
	The Essence of a Good Geometric Proof	174-176
	Picture, Statement, and Reason	177-178
	Finding Congruent Triangles	179
	Two Column Proofs	180-183
	Investigate Hypotenuse - Leg Theorem	183-184
	Similar Figures and Introduction to Similarity Proofs	185-187
	Proving Triangles Similar	188-189
	Test Your Reasoning Skills	190
Chapter 12	Coordinate Geometry	Pages 191-222
	What is the Slope of a Line	191
	Slope Formula	192-196
	How to Write an Equation of a Line	
	The Midpoint Formula	202-205
	The Distance Formula	
	Review Your Formulas	211-212
	Introduction to Coordinate Proofs	213-222
Glossary		Pages 223-228
Answers		Pages 229-263

Angles Puzzle 1

Use your *thinking skills* to find the missing angles and record in degrees below. Figures are *not* to scale, so do not measure.

a _____ b ____ c ___ d ____ e ___ f ___ g ____

h _____ i ___ j ___ k ___ l ___ m ___

Quadrilateral Matching

Match the quadrilateral with its properties. You may use an answer more than once.

- 1 Rectangle
- 2 Rhombus
- 3 Parallelogram
- 4 Kite
- 5 Trapezoid
- 6 Isosceles Trapezoid
- 7 Square

- Diagonals are congruent.
- Opposite sides are congruent.
- Opposite angles are congruent.
- d Consecutive angles are supplementary.
- Diagonals are perpendicular.
- f All sides are congruent.
- All angles are congruent.
- h Sum of the angle measures equals 360°.

Chapter 8 - Geometric Constructions

A Geometric Construction

A geometric construction is a construction done with only a compass and a straightedge. Of course, a good pencil is important. In a classic geometric construction, you are **not** allowed to measure or erase. If you make a mistake, it's best you start over.

Before we problem solve and do some *fun thinking* problems with constructions, it is a good idea to review how to do these constructions.

- Bisecting an angle.
- Copying an angle.
- Constructing a perpendicular bisector to a line.
- Constructing a perpendicular bisector to a line from a point on the not on the line.
- Constructing a line parallel to another line through a given point.
- Constructing some popular polygons.

Note

My constructions are actual drawings since they were done on the computer, but if you follow the directions for each of these, you will make perfect constructions.

Geometric constructions are used by engineers and designers. They will help you see the beauty of geometry.

For fun, create your own design with a compass and a straightedge. Try to fill up a page of paper with your own design.

Problem-Solving With Geometric Constructions (Cont.)

Plato (428-347 BC), a famous Greek philosopher and mathematician, discovered that many constructions can be made with only a compass and no straightedge. Those constructions are now called Mascheroni constructions in honor of Italian mathematician Lorenzo Mascheroni (1750-1800) who wrote a book called *The Geometry of Compasses*.

Using *only* a compass, given segment \overline{AB} , construct segments that are 2, 3, and 4 times bigger than \overline{AB} .

A B

Remember
You cannot use
a straightedge so
you can only
show the points
that mark such
distances.

8 I lost the center of *My Circle* construction below. If you draw a circle and forget where the center is, draw two non-parallel chords. Construct the perpendicular bisectors of each chord and where the perpendicular bisectors meet is your missing center. Try it!

Why does this work? Explain your thinking. ______

Picture, Statement, and Reason

Refer to the picture and write a reason for each statement.

	Statement	Reason
1) B		Given (The fact is stated in the picture or in the information.)
A D C	b ∠ A ≅ ∠ C	b
2 T W	TV ≅ TV	
3	① ∠1 ≅ ∠2	

Two Column Proofs (Cont.)

Refer to the picture and fill in the missing reasons or statements for

each proof.

Given: $\overline{\mathbf{RC}} \perp \overline{\mathbf{AB}}$ and $\overline{AC} \simeq \overline{BC}$

Prove: ∠1 ≅ ∠2

 $\overline{RC} \cong \overline{RC}$

(1)

- \triangle ACR $\cong \triangle$ BCR
- **∠3** ≅ **∠4**
- 8 ∠1 ≅ ∠2

- 1 A Given
- 2 2 Given
- 3 B ∠ACR and ∠BCR are right angles.
 - **(1)** All right angles are congruent
 - 5
 - 6

 - 8

Proof 4

Given: $\overline{WR} \cong \overline{HL}$,

 $\angle W \cong \angle H$, ∠ALW ≅ ∠BRH

Prove: $\angle \triangle AWL \cong \triangle BHR$

and $\angle A \cong \angle B$

Given

- 2 2 Given
- 3 3 Given
- $\overline{RL} \cong \overline{RL}$
- $\overline{WL} \cong \overline{HR}$
- $\angle \triangle AWL \cong \triangle BHR$
- $\angle A \cong \angle B$

- 5
- 6
- 7