Activity 7

Use the clues and the chart to determine the value of each letter, solve the cryptogram, and discover the famous quote.
$h>a>n$
$\mathrm{s}>\mathrm{a}>\mathrm{n}$
$h+3=s+n$

a $=$
h =
s = \qquad
n = \qquad
$e \div g=2$
$t>e$

$i=$
\qquad

$$
\mathrm{e}=
$$

$\mathrm{t}=$ \qquad
$o+k=r$
$r<p$
$o \times r=r$

$$
\begin{aligned}
& \mathrm{r}= \\
& \mathrm{k}= \\
& \mathrm{o}=- \\
& \mathrm{p}=
\end{aligned}
$$

Cryptogram (Parenthesis separate double digits; they have no other meaning.)

| $" 7$ | $c(12) 786$ | 89 | 61 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $w(10) 72(10) 9(11)$ | I862." | | |

(10)65I89(12) 431v(10)3b

Activity 17

Use the clues and the chart to determine the value of each letter, solve the cryptogram, and discover the famous quote.
$(h \div i)+2.5=k$ $h>i$
$1+s+y=20$
l $<\mathrm{s}<\mathrm{y}$
$p>t$
$r>t$
$a=6$
$p \neq 10$

p>r
Cryptogram (Parentheses separate double digits; they have no other meaning.) " (10)3214 fo(11) 8ou(11)795v97 61d 59(10) o(10)39(11)7 $91 \mathrm{jo8}(10) 39$ (12)(11)2v259g9 (10)o do 7o, (10)oo."

$$
\begin{aligned}
& \text { "----- fo }-\quad \text { ou }----v--\quad--\mathrm{d} \\
& ---\quad \circ-----\quad-- \text { jo }-\quad--- \\
& ---v---\mathrm{g}-\quad-\text { o do } \quad \text { o, } \quad \text { oo." }
\end{aligned}
$$

Activity 23

Use the clues and the chart to determine the value of each letter, solve the cryptogram, and discover the famous quote.
$t>0+a+o$
$0 \times a=(a \times a)-a$

\qquad
$a=$
t = \qquad
$0=$
$j=n+e$
$\mathrm{n} \times \mathrm{m}=\mathrm{m}$

\qquad
\qquad
$\mathrm{m}=$
$\mathrm{e}=$
$w+w=(r+w)-2$
$\mathrm{g}=12$

$r=$
$w=-$
$\mathrm{w}=\square$
$\mathrm{g}=\square$

Cryptogram (Parenthesis separate double digits; they have no other meaning.) "8(11)39 84 (11)2p4 4v4(10) 92 d2 8i9(11) 4364, 84 $7 u 69$ I43(10)1 fi(10)69 92 d2 8i9(11) dili(12)41c4." 637u4| 52(11)1621

Activity 24

Use the clues and the chart to determine the value of each letter, solve the cryptogram, and discover the famous quote.
i $>$ s
$\mathrm{S}<\mathrm{U}$
u >0
i < 0
i < u

$d \times d=(e+1)+8$
$\mathrm{q}<\mathrm{d}$

$\mathrm{d}=$
$\mathrm{e}=$
$a=$
$\mathrm{q}=$
$m+v=1 \times 4$
$v-1=(m-v)+6$

Cryptogram (Parentheses separate double digits; they have no other meaning.) " (10)(12)t (10)f th7 2(12)73t8(10)n3 (10)f 3t(12)47nt3 $c(10)(11) 7$ (11)(10)3t (10)f th7 c176t897 $847636 n 4$ 483c(10)971873."

7557n 56ng71

$$
\begin{aligned}
& \text { "_- } \mathrm{t} \quad \mathrm{f}^{\mathrm{f}} \text { th_ } \quad----\mathrm{t}-\mathrm{n}_{-} \quad \mathrm{f}^{\mathrm{f}} \quad \mathrm{t}_{-}-\mathrm{n}_{-}
\end{aligned}
$$

$$
\begin{aligned}
& -----\quad \mathrm{n}_{-} \quad---\mathrm{C}------ \text {. }^{\prime \prime}
\end{aligned}
$$

Activity 28

Use the clues and the chart to determine the value of each letter, solve the cryptogram, and discover the famous quote.
$a \times a=142+t$
$(g \times g) \times e=g \times g$

$\mathrm{V}=$
$p=$
$\mathrm{n}=$
$0=$
$i>1>r$
i<h

$$
\begin{aligned}
& a= \\
& \mathrm{t}=\square \\
& \mathrm{g}=\square \\
& \mathrm{e}=\square
\end{aligned}
$$

$(o \times n) \times 10=500$
$0>n$
$\mathrm{n}<\mathrm{p}$
p>o

$$
\begin{aligned}
& \mathrm{l}= \\
& \mathrm{i}= \\
& \mathrm{h}= \\
& \mathrm{r}=
\end{aligned}
$$

Cryptogram (Parentheses separate double digits; they have no other meaning.) " 12) 77 29(12)2 4782213s 8s 5(10)2 4(10)7d." 15478s9
(11)3(10)613b
"- - - - - - - - - - - s - $\quad-\quad-\quad$
_ - _ d."

Answers: $b=6 ; f=8 ; \mid=1 ; s=5$
If f is greater than or equal to 371 minus 365 (\# of days in a year), f must be 6 or 8 . If / times any positive \# equals the same \#, / must be 1. If f is greater than / plus s, f must be 8 for the statement to be true. Since s is less than b, s must be 5 . b is then 6 .

Answers: $\mathrm{t}=7 ; \mathrm{o}=12 ; \mathrm{g}=2 ; \mathrm{h}=10$ If t equals 21 minus o plus g, t must be either 7 , or 12 , and o and g must be either 2,7 , or 12. Therefore, h is then 10. If o equals t plus h minus 5, o must be 12 and t must be 7 for the equation to be true. g is then 2 .

Page 17: "Think for yourselves and let others enjoy the privilege to do so, too."

Voltaire

Answers: $\mathrm{h}=3 ; \mathrm{i}=2 ; \mathrm{n}=1 ; \mathrm{k}=4$ If h is greater than i, and h divided by i plus 2.5 $=k$, h must be 3 , i must be 2 , and k must be 4 for the equation to be true. n is then 1 .

Answers: $y=8 ; \mathrm{e}=9 ; \mathrm{l}=5$; $\mathrm{s}=7$ If / plus s plus $y=20,1, s$, and y must be 5, 7, or 8. Therefore, e must be 9. Since / is less than s and y, / must be 5 . Since s is less than y, but greater than $/, s$ must be 7 . y is then 8 .

Answers: $t=10 ; p=12 ; a=6 ; r=11$ If t is less than p and r, t must be 6 or 10. If a equals 6, t must be 10 . Since p is greater than r and t, p must be 12 , the largest number. Since r is less than p, but greater than t, r must be 11 .

Page 18: "Try not to become a man of success, but rather try to become a man of value."

Albert Einstein

Answers: v = 3; $\mathrm{n}=12 ; \mathrm{a}=4 ; \mathrm{t}=11$ If v plus 6 equals t minus a minus $2, t$ must be 11 , and a and v must be either 3 or 4 for the equation to be true. Therefore, n must be 12 . Since v is less than a, v must be 3 and a must be 4 .

Answers: $\mathrm{o}=9 ; \mathrm{h}=1$; $\mathrm{e}=10 ; \mathrm{m}=2$ If o is less than all double digits and greater than h, o must be either 2 or 9 , and since m is not 1 or $10, m$ must also be either 2 or 9 . Since e is greater than 9 , e must be 10 . If m equals 13 minus e plus h, m must be 2 and h must be 1 for the equation to be true. o is then 9.

Answers: $\mathrm{f}=5 ; \mathrm{r}=7 ; \mathrm{k}=6 ; \mathrm{i}=8$ If f equals i minus $3, f$ must be 5 , and i must be 8 for the equation to be true. If i equals 1 plus r, r must be 7 for the equation to be true. k is then 6 .

Page 27: "Those who know how to think need no teachers."

Mahatma Gandhi

Answers: $\mathrm{t}=9$; $\mathrm{h}=6 ; \mathrm{o}=10 ; \mathrm{w}=7$ If t is not 7 , and t is greater than w, but less than o, t must be a middle number; therefore, t must be 9. If h is less than $7, h$ must be 6 . Since o is greater than w, o must be 10, and w must be 7 .

Answers: $\mathrm{n}=11 ; \mathrm{e}=4 ; \mathrm{a}=12 ; \mathrm{r}=3$
If n times r equals $33, n$ and r must be either 11 or 3 for the equation to be true. e is less than n, but greater than r, so e must be a middle number, either 4 or 11; therefore, e must be 4. r is less than e; therefore, r must be 3 , and n must be 11. a is then 12 .

Answers: $s=1 ; \mathrm{m}=8 ; \mathrm{k}=5 ; \mathrm{i}=2$ i is less than 3 ; therefore, i must be either 1 or 2 , and since i is greater than s, and not 8 , i must be 2 , and s must be 1 . If k plus k minus i equals m, k must be 5 and m must be 8 for equation to be true.

Page 28: "All that glitters is not gold."
English Proverb

Answers: $\mathrm{a}=12 ; \mathrm{t}=2 ; \mathrm{g}=4 ; \mathrm{e}=1$ If a times a equals t plus 142 , a must be 12 , and t must be 2 for the equation to be true. If g times g, times e, equals g times g, e must be 1. g is then 4 .

Answers: $v=6 ; p=11 ; \mathrm{n}=5 ; \mathrm{o}=10$
If o times n times 10 equals 500,o and n must be either 5 or 10 for the equation to be true. If o is greater than n, o must be 10 and n must be 5. If n is less than p, p must be 6 or 11 , the only numbers remaining that are greater than 5 . If p is greater than o, p must be $11 . v$ is then 6 .

Answers: $\mathrm{I}=7 ; \mathrm{i}=8 ; \mathrm{h}=9 ; \mathrm{r}=3$ If i is greater than / and r, but less than h, i must be 8 . h is greater than i, so h must be 9 , the largest number. r is less than /; therefore, r must be 3, and / must be 7 .

Page 29: "Be the change you want to see in the world."

Mahatma Gandhi

Answers: $\mathrm{e}=8$; $\mathrm{h}=5$; $\mathrm{s}=2 ; \mathrm{b}=10$ If 10 percent of 100 equals b, b must be 10 . Six percent of 300 equals e plus b; therefore, e must be 8 for the equation to be true. If e minus s plus 1 equals h, and s is greater than h, s must be 2 , and h must be 5 for the equation to be true.

Answers: $\mathrm{c}=7 ; \mathrm{o}=1 ; \mathrm{u}=4 ; \mathrm{t}=12$
If 11 percent of 400 minus t equals $32, t$ must be 12 for the equation to be true. If t divided by o equals u times 3 , o must be 1 , and u must be 4 for the equation to be true. c is then 7 .

