## Activity 5

Use the clues and the chart to determine the value of each letter, solve the cryptogram, and discover the classic joke.
$\mathrm{g}>7$
$\mathrm{g}<\mathrm{a}-\mathrm{i}$

g = $\qquad$
i $=$
C = $\qquad$
a = $\qquad$
$n \neq 9$
d $\neq 9$
d $<\mathrm{h}<\mathrm{r}$
$r \neq 11$

$\mathrm{h}=$ $\qquad$
d $=$ $\qquad$
$r=$
$\mathrm{n}=$

$0=\square$
$\mathrm{f}=\square$
$\mathrm{t}=\square$
$1=\square$
$0>f>1$
$f \neq 5$
$0 \neq f+1$

Cryptogram (Parentheses separate double digits; they have no other meaning.)
W9(10)7 616 79e 7(12)(10)4412 31897 s(10)y 75 79e 2(10)(12)? 65(11)'7 355k, 1'm 29(10)(11)81(11)8!

$$
\begin{aligned}
& \text { W--- --- --e ------- ----- } \\
& \text { s_y - - - ee - - ? - - -'- _--k, } \\
& \text {-'m ---------! }
\end{aligned}
$$



Answers: $a=9 ; t=3 ; h=10 ; r=4$ If a plus $t$ equals 12 , then $a$ and $t$ must be either 3 or 9 for the equation to be true. If a plus $h$ equals 19, a and $h$ must be either 9 or 10 for the equation to be true; therefore, a must be 9, the only number used in both equations. Therefore, $t$ must be 3 , and $h$ must be 10 . $r$ is then 4.


Answers: $p=11 ; e=12 ; c=7 ; m=8$ If $p$ equals $c$ plus 4 , and $m$ equals $c$ plus $1, p$ must be $11, c$ must be 7 , and $m$ must be 8 for the equations to be true. $e$ is then 12.

Page 4: What do you call a fake noodle?

## An impasta!



Answers: $o=12 ; \mathrm{c}=2$; $\mathrm{i}=10 ; \mathrm{s}=1$
If $i$ equals $c$ times $5, i$ must be 10 and $c$ must be 2 for the equation to be true with the given numbers. Since $o$ is greater than $s$, o must be 12 , and $s$ must be 1 .


Answers: $f=6 ; m=5 ; t=4 ; a=3$
Since $a$ is less than both $m$ and $f, a$ must be one of the smallest numbers, either 3 or 4 , and since $a$ is not 4 , a must be 3 . If $m$ is not 4 or 6 , then $m$ must be 5, the only number left. Since $f$ is greater than $m, f$ must be $6 . t$ is then 4 .


Answers: $\mathrm{p}=9 ; \mathrm{e}=11 ; \mathrm{n}=8 ; \mathrm{l}=7$
If $e$ is greater than 10 , e must be 11 , the largest number. If $p$ is greater than $8, p$ must be 9 . Since $n$ is greater than /, $n$ must be 8 and / must be 7 .

Page 5: What did the traffic light say to the car? Don't look, I'm changing!


Answers: $\mathrm{g}=8$; $\mathrm{i}=1$; $\mathrm{c}=2$; $\mathrm{a}=10$
Since $g$ is greater than $7, g$ must be either 8 or 10. Since $g$ is less than a minus $i, g$ must be 8 , a must be 10 and $i$ must be 1 for the statement to be true. $c$ is then 2 .


Answers: $\mathrm{h}=9 ; \mathrm{d}=6 ; \mathrm{r}=12 ; \mathrm{n}=11$
Since $d$ is less than both $h$ and $r$, and is not 9, then $d$ must be 6, the lowest number. Since $r$ is greater than $h$ and $d$, and is not 11, then $r$ must be 12, the largest number. Since $h$ is less than $r$, but greater than $d$, $h$ must be either 9 or 11 , and since $n$ is not 9 , it must be 11 ; therefore, $h$ must be 9 .


Answers: $0=5 ; f=4 ; t=7 ; \quad l=3$
Since $o$ is greater than $f$ and $/$, o must be either 5 or 7 . Since $f$ is greater than /, but less than $0, f$ must be a middle number, either 4 or 5, and / must be a lower number, either 3 or 4 . If $f$ does not equal 5 , then $f$ must be 4 ; therefore I must be 3. If o does not equal $f$ plus $/$, then 0 does not equal 7; therefore, o must be 5, the only number left. $t$ is then 7 .

