Tictac Math

All rows, columns, and three numeral diagonals must add up to the same sum. Write the total and then fill in the empty spaces.

Problem 1

Total: \qquad

Total: \qquad

Problem 2

Total: \qquad

Problem 4

Problem 2: ? = 10
Explanation: Remove \square from both sides on 2nd balance so $\bigcirc=15$. Substitute 15 for each \bigcirc on 1st balance so $15+15=30=$ nsen Divide both sides in thirds so $10=\boldsymbol{N}$.

Page 33

Problem 1:
Problem 2:

$$
\begin{array}{c|c|c}
120 & 80 & 280 \\
\hline 320 & 160 & 0 \\
\hline 40 & 240 & 200 \\
\text { Total: } 480
\end{array}
$$

Problem 3:

$$
\begin{array}{l|l|l}
30 & 50 & 22 \\
\hline 26 & 34 & 42 \\
\hline 46 & 18 & 38
\end{array}
$$

Total: 102

$$
\begin{array}{c|c|c}
43 & 1 & 67 \\
\hline 61 & 37 & 13 \\
\hline 7 & 73 & 31 \\
\text { Total: } & 111
\end{array}
$$

Problem 4:

$$
\begin{array}{l|l|l}
48 & 43 & 44 \\
\hline 41 & 45 & 49 \\
\hline 46 & 47 & 42
\end{array}
$$

Total: 135

Page 34

Problem 1: ? = 75
Explanation: Remove \searrow from both sides on 2nd balance so $\bigcirc=\searrow \square$. Substitute \bigcirc for $\diamond \square$ on 1st balance so $100=\bigcirc \bigcirc$ Divide in fourths, $=25$. Divide both sides in half on 1st balance so $50=\searrow \square . \square \square=25+50=75$.

Problem 2: ? = 750
Explanation: Remove ${ }^{\text {O }}$ + 10 from both sides on 2nd balance so =15. Substitute 15 for on 1st balance so $\oslash=500$. Divide in half so $\oslash=250$.
$\oslash \oslash=500+250=750$.
Page 35
Problem 1: $b=200$
Problem 2: $\mathrm{a}=470$
$c=40$
$c=140$
$d=130$
$a-d=0$
d $=220$
$b-c=250$
Problem 3:

$$
\begin{aligned}
& a=66 \\
& b=46 \\
& d=36 \\
& a-c=50
\end{aligned}
$$

$$
\begin{array}{ll}
\text { Problem 4: } & a=112 \\
& b=94 \\
& c=52 \\
& b-d=55
\end{array}
$$

Page 36
Problem 1: ? = 72
Explanation: Remove \AA from both sides on 1st balance so \searrow D Double both sides on 2nd balance so $\bigcirc=32$. Substitute 32 for \bigcirc on 1st balance so sides in fourths so $=24$.

Problem 2: ? = 12
Explanation: Divide both sides on 1st balance in half so $\Delta=$. Substitute 0 for each Δ on 2nd balance so $\bigcirc=12+\bigcirc$ Remove
from sides so $\bigcirc=12$.
Page 37
Problem 1:

$b=65$	Problem 2:	$a=82$
$c=27$		$c=29$
$d=48$		$d=38$
$b-d=17$		$a-c=53$

Problem 3:
Problem 4: $a=125$
$b=81$
$b=136$
$d=33$
$c=88$
$a-d=67$
$b-c=48$
Page 38
Problem 1:
Problem 2:

800	600	1,600	101	5	71
1,800	1,000	200	29	59	89
400	1,400	1,200	47	113	17
Total: 3,000			Total: 177		

Problem 3:

$$
\begin{array}{l|l|l}
55 & 78 & 68 \\
\hline 80 & 67 & 54 \\
\hline 66 & 56 & 79
\end{array}
$$

Total: 201
Page 39
Problem 1: $b=52$
Problem 4:

$$
\begin{array}{c|c|c}
91 & 7 & 103 \\
\hline 79 & 67 & 55 \\
\hline 31 & 127 & 43
\end{array}
$$

Total: 201

Problem 1:
Problem 2: $a=150$

$$
c=48
$$

$d=2$
$c=850$
$a-d=10$
Problem 3: $a=63$
$b=71$
$d=37$
a-c = 36
Problem 4: $a=1,000$
$b=118$
$c=582$
$b+d=877$
Page 40
Problem 1: ? = 24
Explanation: Remove 3 from both sides and divide in fourths on 1st balance so $9=\boldsymbol{L}$. Substitute 9 for Δ on 2 nd balance so $\rangle+7=9+1=10$. Remove 7 from both sides so $\rangle=3 . \square=\rangle+24$.

Problem 2: ? = 100
Explanation: Divide both sides on 2nd balance in fifths so $=8$. Substitute 8 for each on 1st balance so $\square \Delta=48$. Divide into thirds so $\Delta=$ 16. So $\square \square=32+16=48 . \square \square+52=100$.

