ANSWERS

Problem 2: ? = 2.250 Explanation: Divide both sides on 3rd balance in fourths so \bigcirc = 250. Substitute 250 for \bigcirc on 1st balance so 850 = 🗙 🗙 + 250. Remove 250 from both sides so $600 = \mathbf{X} \mathbf{X}$. Divide both sides in half so $300 = \mathbf{X}$. Substitute 300 for each 🗙 on 2nd balance so 300 + 300 + 300 = 900 = 📿 Divide both sides in half so 450 = 2. $\square \square \square = 450 \cdot 5 = 2,250.$ Page 4 Problem 1: $? = \frac{1}{3}$ Explanation: Divide both sides on 1st balance in half so $\bigtriangledown = 1\frac{1}{2}$. Substitute $1\frac{1}{2}$ for each \bigtriangledown on 2nd balance so $1\frac{1}{2} + 1\frac{1}{2} + 1\frac{1}{2} = 4\frac{1}{2} = 1$. Substitute $4\frac{1}{2}$ for each on 3rd balance so $4\frac{1}{2}$ + $4\frac{1}{2}$ + $4\frac{1}{2} = 10$. Remove 9 from both sides so 1. Divide both sides in thirds so $\bigvee = \frac{1}{3}$ Problem 2: $? = 6\frac{3}{4}$ Explanation: Divide both sides on 2nd balance in half so $\square = 3\frac{1}{2}$. Substitute $3\frac{1}{2}$ for each \square on 1st balance so $3\frac{1}{2} + 3\frac{1}{2} + 3\frac{1}{2} = 10\frac{1}{2} = 10\frac{1}{2}$. Substitute $10\frac{1}{2}$ for each \star on 3rd balance so $\bigcirc \bigcirc + 10\frac{1}{2} +$ $10\frac{1}{2} = 30$. Remove 21 from both sides so $\bigcirc \bigcirc = 9$. Divide in fourths so $\bigtriangledown = 2\frac{1}{4}$. $\bigcirc \bigtriangledown = 2\frac{1}{4} \cdot 3 = 6\frac{3}{4}$. Page 5 Problem 1: ? = 1,275 Explanation: Divide both sides on 1st balance in \mathcal{M} = 150. Substitute 150 for 2nd balance so 150 + = 1,050. Remove 150 from both sides so = 900. Substitute 900 for on 3rd balance so $900 + \bigcirc \bigcirc = 1.750$. Remove 900 from both sides so \bigcirc = 850. Divide both sides in half $_{so} \diamondsuit = 425 \diamondsuit \diamondsuit$ $= 425 \cdot 3 = 1.275.$ Problem 2: ? = 3Explanation: Divide both sides on 1st balance in fourths so $\Delta = 3\frac{1}{4}$. Substitute $3\frac{1}{4}$ for each Δ on 2nd balance so $3\frac{1}{4} + 3\frac{1}{4} + 3\frac{1}{4} = 9\frac{3}{4} = 0$ Substitute $9\frac{3}{4}$ for O on 3rd balance so $9\frac{3}{4}$ + $10\frac{1}{2}$. Remove $9\frac{3}{4}$ from both sides so $\Psi = \frac{3}{4}$. $=\frac{3}{4} \cdot 4 = 3$.