ANSWERS

Page 1

Problem 1: ? = 75
Explanation: Divide both sides on 1st balance in half, so $\searrow=500$. Substitute 500 for \rangle on 2nd balance so $\square+500=750$. Remove 500 from both sides so $\square=250$. Divide both sides in half so $\square=125$. Substitute 125 for \square on 3rd balance so $\bigcirc \bigcirc_{+}$ $125=275$. Remove 125 from both sides so $\bigcirc \bigcirc=$ 150. Divide in half so $\bigcirc=75$.

Problem 2: ? = 225
Explanation: Substitute \square from 2nd balance for \rangle on 1st balance so $1,000=\bigcirc \square \square$. Divide both sides in half so $500=\square$ Substitute 500 for \square on 3rd balance so $500+$. Remove 500 from both sides so Divide both sides in half so = 75 .

$$
\text { A = } 75 \cdot 3=225
$$

Page 2

Problem 1: $b=200$
Problem 2: $a=345$
$c=900$
$c=296$
$\mathrm{d}=9,900$
$d=358$
$b+d=10,100$
$a+d=703$
Problem 3:
$a=2,563$
Problem 4: $a=10,845$
$b=3,724$
$d=5,097$
$a+c=6,851$
Problem
$b=12,654$
$c=11,369$
$b+c=24,023$

$$
\begin{aligned}
\text { Problem 5: } & a=1 \frac{3}{4} \\
& c=\frac{1}{2} \\
& d=1 \frac{1}{3} \\
& a+d=3 \frac{1}{12}
\end{aligned}
$$

Page 3

Problem 1: ? = 1,150
Explanation: Divide both sides on 2nd balance in thirds so $\bigcirc=700$. Substitute 700 for \bigcirc on 3rd balance so $\square+700=1,000$. Remove 700 from both sides so $\square=300$. Divide both sides in half so $\square=150$. Substitute 150 for \square and 700 for \bigcirc on 1st balance so $150+700+\lambda=2,000$. Remove 850 from both sides so $\Delta=1,150$.

Problem 2: ? = 2,250
Explanation: Divide both sides on 3rd balance in fourths so $\bigcirc=250$. Substitute 250 for \bigcirc on 1st balance so $850=$ +250. Remove 250 from both sides so $600=$. Divide both sides in half so $300=\boldsymbol{N}$. Substitute 300 for each Non 2nd balance so $300+300+300=900=\square$. Divide both sides in half so $450=\Delta$.
$\square \square \Delta=450 \cdot 5=2,250$.

Page 4

Problem 1: ? = $\frac{1}{3}$
Explanation: Divide both sides on 1st balance in half so $\nabla=1 \frac{1}{2}$. Substitute $1 \frac{1}{2}$ for each ∇ on 2nd balance so $1 \frac{1}{2}+1 \frac{1}{2}+1 \frac{1}{2}=4 \frac{1}{2}=\square$ Substitute $4 \frac{1}{2}$ for each \square on 3rd balance so $\rangle\left\rangle+4 \frac{1}{2}+\right.$ $4 \frac{1}{2}=10$. Remove 9 from both sides so $\rangle\langle$ 1. Divide both sides in thirds so $\rangle=\frac{1}{3}$.

Problem 2: ? $=6 \frac{3}{4}$
Explanation: Divide both sides on 2nd balance in half so $\square=3 \frac{1}{2}$. Substitute $3 \frac{1}{2}$ for each \square on 1 st balance so $3 \frac{1}{2}+3 \frac{1}{2}+3 \frac{1}{2}=10 \frac{1}{2}=$. Substitute $10 \frac{1}{2}$ for each on 3rd balance so \bigcirc $10 \frac{1}{2}=30$. Remove 21 from both sides so $\bigcirc=9$. Divide in fourths so $\square=2 \frac{1}{4}$. $\bigcirc=2 \frac{1}{4} \cdot 3=6 \frac{3}{4}$.

Page 5

Problem 1: ? = 1,275
Explanation: Divide both sides on 1st balance in half so $\square \stackrel{\rightharpoonup}{2}=150$. Substitute 150 for \square 2nd balance so $150+\infty=1,050$. Remove 150 from both sides so $=900$. Substitute 900 for on 3rd balance so $900+\searrow\rangle=1,750$. Remove 900 from both sides so $\triangle \vee=850$. Divide both sides in half so $\rangle=425\rangle.\rangle=425 \cdot 3=1,275$.

Problem 2: ? = 3
Explanation: Divide both sides on 1st balance in fourths so $\Delta=3 \frac{1}{4}$. Substitute $3 \frac{1}{4}$ for each Δ on 2nd balance so $3 \frac{1}{4}+3 \frac{1}{4}+3 \frac{1}{4}=9 \frac{3}{4}=\bigcirc$. Substitute $9 \frac{3}{4}$ for \bigcirc on 3rd balance so $9 \frac{3}{4}+=$ $10 \frac{1}{2}$. Remove $9 \frac{3}{4}$ from both sides so $=\frac{3}{4}$. $=\frac{3}{4} \cdot 4=3$.

